Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation.

نویسندگان

  • Matteo Nicoli
  • Edoardo Vivo
  • Rodolfo Cuerno
چکیده

We study numerically the Kuramoto-Sivashinsky equation forced by external white noise in two space dimensions, that is a generic model for, e.g., surface kinetic roughening in the presence of morphological instabilities. Large scale simulations using a pseudospectral numerical scheme allow us to retrieve Kardar-Parisi-Zhang (KPZ) scaling as the asymptotic state of the system, as in the one-dimensional (1D) case. However, this is only the case for sufficiently large values of the coupling and/or system size, so that previous conclusions on non-KPZ asymptotics are demonstrated as finite size effects. Crossover effects are comparatively stronger for the two-dimensional case than for the 1D system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamics of the Kuramoto-Sivashinsky Equation in Two Dimensions

The large scale properties of spatiotemporal chaos in the 2D Kuramoto-Sivashinsky equation are studied using an explicit coarse-graining scheme. A set of intermediate equations are obtained which describe interactions between the small scale structures and the hydrodynamic degrees of freedom. Possible forms of the effective large scale hydrodynamics are constructed and examined. Although a numb...

متن کامل

Renormalization-group and numerical analysis of a noisy Kuramoto-Sivashinsky equation in 1 + 1 dimensions.

The long-wavelength properties of a noisy Kuramoto-Sivashinsky (KS) equation in 1 + 1 dimensions are investigated by use of the dynamic renormalization group (RG) and direct numerical simulations. It is shown that the noisy KS equation is in the same universality class as the Kardar-Parisi-Zhang (KPZ) equation in the sense that they have scale invariant solutions with the same scaling exponents...

متن کامل

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

A Modified Kardar–parisi–zhang Model

A one dimensional stochastic differential equation of the form dX = AXdt+ 1 2 (−A) ∂ξ[((−A)X)]dt+ ∂ξdW (t), X(0) = x is considered, where A = 1 2∂ 2 ξ . The equation is equipped with periodic boundary conditions. When α = 0 this equation arises in the Kardar–Parisi–Zhang model. For α 6= 0, this equation conserves two important properties of the Kardar–Parisi–Zhang model: it contains a quadratic...

متن کامل

Unified moving-boundary model with fluctuations for unstable diffusive growth.

We study a moving-boundary model of nonconserved interface growth that implements the interplay between diffusive matter transport and aggregation kinetics at the interface. Conspicuous examples are found in thin-film production by chemical vapor deposition and electrochemical deposition. The model also incorporates noise terms that account for fluctuations in the diffusive and attachment proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010